Детектор металла на pic
Металлоискатель пират на микроконтроллере
Металлоискатель пират на микроконтроллере своими руками
В интернете,и на нашем сайте схема металлоискателя Пират получило широкое распространение, и тут выложу схему данного металлоискателя на микроконтроллере PIC12F683.Смотрим далее
Схема устройства:
Схема заработала, но ряд моментов в прошивке контроллера и самой схеме мне не понравилось.
Творческий зуд заставил меня написать под ту плату свою прошивку. Не полное использование потенциала контроллера и желание ещё больше упростить схему аналоговой части подтолкнули на эксперименты.
В результате было “отутюжено” с десяток вариантов плат и в конце концов родился “Питон” (точнее Pi-Tone) как попытка устранить главный недостаток “ИМПАД”-“ПИРАТ” – жуткий звук. (У меня через 20-30 минут от слушания его жужжания начинала болеть голова).
К сожалению, ресурсов PIC12F675 для реализации задуманного не хватило.
Пришлось применить PIC12F683. Он всего на 10-15 центов дороже, чем PIC12F675, зато теперь не только на всё хватило ресурсов, но и остался задел для дальнейшего развития проекта (а задумки уже есть).
Чувствительность металлоискателя при “правильных” деталях и точном исполнении поисковой катушки те же 20-25см на 5 коп. СССР и примерно полтора метра на крупные металлические предметы вроде двери. Ток потребления в режиме поиска около 30 мА и при сработке около 50 мА.
Кроме лучшего звука, за счёт применения контроллера, удалось добавить в схему контроль напряжения аккумулятора.
При включении “Питон” сообщает уровень заряда: три сигнала – напряжение батареи выше 12в, два – более 11,3в, один – выше 10,5в.
При снижении напряжения ниже 10,3в (для аккумулятора это критическая величина) работа формирователя импульсов останавливается и контроллер издаёт звук, оповещающий о прекращении работы металлоискателя.
Светодиод работает синхронно с генерацией звуков, поэтому на эту цепь можно подключить цепь управления вибромоторчиком для беззвучного режима.
Динамик лучше использовать высокоомный (30-50 Ом). С наушниками чувствительность металлоискателя немного выше (видимо из-за меньшего потребления тока и нагрузки на батарею).
При правильной сборке из исправных деталей металлодетектор начинает работать сразу и без настройки, если Вы не захотите экспериментировать с катушкой. Я рассчитывал номиналы на плате и временные параметры работы контроллера под определённую катушку. Её надо будет сделать точно.
Катушка делается очень просто – из самого обычного и распространённого кабеля для компьютерных сетей, витой пары. 4 пары без экрана. Понадобится кусок длинной ровно 2 метра.
Далее, надо будет с каждого конца удалить трубку изоляции длинной примерно 2-3см. и зачистить кончики всех восьми одножильных проводков витых пар. Далее надеваем на проводки изоляционные трубочки и спаиваем концы так, чтобы получить 8 витков провода. С учётом трёх колец кабеля имеем 3 х 8 = 24 витка в катушке.
Запрограммировать микроконтроллер PIC12F683 можно с помощью такого программатора.
Порядок спайки концов катушки:
Вот такой вид имеют контакты самодельной катушки из витой пары:
От поисковой катушки до платы потребуется кусок кабеля. Я использовал аудиокабель – 2 жилы в толстом прозрачном силиконе. Сечение 0,75мм по меди. Почему он? У него низкая погонная ёмкость.
Это способствует отсутствию паразитных колебаний (“звона”) сигнала при формировании зондирующих импульсов. Если Вы примените другой кабель, возможно понадобится подбор шунтирующих катушку резисторов (R4 и R5).
Если Вам хочется получить максимальную дальность обнаружения металлических предметов, ниже методика подбора сопротивления параллельно катушке от автора “Пирата”:
Скачать исходники для данного металлоискателя
Источник: http://radiostroi.ru/index.php/metlisk/258-metalloiskatel-pirat-na-mikrokontrollere
Простой импульсный металлоискатель “Питон”
Источник: http://smartelectronix.biz/publ/prostoj_impulsnyj_metalloiskatel_piton/1-1-0-114
Металлоискатель Clone PI (Клон ПИ) своими руками
Clone PI это импульсный металлоискатель, без определения типа металлов. Клон ПИ может работать с катушками различных размеров.
При использовании катушки кольцо, диаметром 20 см, металлоискатель Клон имеет глубину поиска монеты до 25 см и крупного металла до 1 метра.
За основу Клона взята схема металлоискателя Tracker PI-2, с внесением в нее некоторых изменений.
Металлоискатель Clone PI имеет следующие отличия от оригинала (Металлоискателя Tracker PI-2):
- Место микроконтроллера AVR, используется PIC контроллер.
- Для индикации металлоискатель использует ЖКИ экран, без поддержки светодиодов.
- В приборе встроена автоподстройка: быстрая и медленная.
- Все управления металлоискателя кнопочное (без переменных резисторов).
Схема металлоискателя Клон ПИ:
Внимание: последние версии прошивок для металлоискатя, выпускались для микроконтроллера PIC18F252!!!
Клон ПИ это импульсный металлоискатель, средней сложности, для новичка он будит сложен в изготовлении. Но человек, имеющий небольшой опыт в изготовлении металлоискателей или другой электроники сможет с ним справиться.
Схема металлоискателя Клон содержит несколько дорогостоящих элементов: ЖКИ экран, АЦП MCP3201 и микроконтроллер. Перед началом изготовления металлоискателя, обязательно приобретите АЦП, так как с его покупкой могут возникнуть трудности!
Также схема металлоискателя, содержит программируемый микроконтроллер, поэтому для его изготовления вам понадобится программатор, с поддержкой программирования микроконтроллеров — PIC18F252 и умение им пользоваться
Источник: http://www.miriskateley.com/samodelnye-metalloiskateli-ili-kak-sdelat-metalloiskatel-svoimi-rukami/metalloiskatel-clone-pi-svoimi-rukami
Самодельные металлоискатели: простые и посложнее — на золото, черный металл, для стройки
Металлоискатель или металлодетектор предназначен для обнаружения предметов, по своим электрическим и/или магнитным свойствам отличающихся от среды, в которой они находятся. Попросту говоря, он позволяет находить металл в земле.
Читайте также: Устанавливаем в корпус многофункциональный циклический таймер
Но не только металл, и не только в грунте.
Металлодетекторами пользуются службы досмотра, криминалисты, военные, геологи, строители для поиска профилей под обшивкой, арматуры, сверки планов-схем подземных коммуникаций, и люди многих других специальностей.
Металлоискатели своими руками чаще всего делают любители: кладоискатели, краеведы, члены военно-исторических объединений. Им, начинающим, и предназначена в первую очередь данная статья; описанные в ней устройства позволяют найти монету с советский пятак на глубине до 20-30 см или железяку с канализационный люк примерно в 1-1,5 м под поверхностью.
Однако этот самодельный приборчик может пригодиться и на хозяйстве при ремонте или на стройке. Наконец, обнаружив в земле центнер-другой брошенной трубы или металлоконструкций и сдав находку в металлолом, можно выручить приличную сумму.
А подобных сокровищ в земле российской точно больше, чем пиратских сундуков с дублонами или боярско-разбойничьих кубышек с ефимками.
металлоискатель Пират
Немного больше внимания по сравнению с остальными будет уделено металлоискателю «Пират», см. рис. Этот прибор достаточно прост для повторения начинающими, но по своим качественным показателям не уступает многим фирменным моделям ценой до $300-400.
А главное – он показал отличную повторяемость, т.е. полную работоспособность при изготовлении по описаниям и спецификациям.
Схемотехника и принцип действия «Пирата» вполне современны; по его настройке и методике использования имеется достаточно руководств.
Принцип действия
Металлоискатель действует по принципу электромагнитной индукции.
В общем схема металлоискателя состоит из передатчика электромагнитных колебаний, передающей катушки, приемной катушки, приемника, схемы выделения полезного сигнала (дискриминатора) и устройства индикации.
Отдельные функциональные узлы часто объединяют схемотехнически и конструктивно, напр., приемник и передатчик могут работать на одну катушку, приемная часть сразу выделяет полезный сигнал и т.п.
Принцип действия металлоискателя
Катушка создает в среде электромагнитное поле (ЭМП) определенной структуры. Если в зоне его действия оказывается электропроводящий предмет, поз. А на рис., в нем наводятся вихревые токи или токи Фуко, которые создают его собственное ЭМП.
В результате структура поля катушки искажается, поз. Б. Если же предмет не электропроводящий, но обладает ферромагнитными свойствами, то он искажает исходное поле за счет экранирования.
В том и другом случае приемник улавливает отличие ЭМП от исходного и преобразует его в акустический и/или оптический сигнал.
Детектор или сканер?
В коммерческих источниках дорогие высокочувствительные металлодетекторы, напр. Терра-Н, нередко называют геосканерами. Это неверно.
Геосканеры действуют по принципу измерения электропроводности грунта по разным направлениям на разной глубине, эта процедура называется боковым каротажем.
По данным каротажа компьютер строит на дисплее картинку всего, что в земле, включая различные по свойствам геологические слои.
Разновидности
Общие параметры
Принцип действия металлодетектора возможно воплотить технически разными способами соответственно назначению прибора.
Металлоискатели для пляжного золотоискательства и строительно-ремонтного поиска внешне могут быть похожи, но существенно отличаться по схеме и техническим данным.
Чтобы правильно сделать металлоискатель, нужно четко представлять себе, каким требованиям он должен удовлетворять для данного рода работы. Исходя из этого, можно выделить следующие параметры поисковых детекторов металла:
- Проницание, или проникающая способность – максимальная глубина, на которую распространяется ЭМП катушки в грунте. Глубже прибор ничего не обнаружит при любом размере и свойствах объекта.
- Величина и размеры зоны поиска – воображаемая область в земле, в которой объект будет обнаружен.
- Чувствительность – способность обнаруживать более или менее мелкие предметы.
- Избирательность – способность сильнее реагировать на желательные находки. Сладкая мечта пляжных старателей – детектор, который пищит только на драгоценные металлы.
- Помехоустойчивость – способность не реагировать на ЭМП посторонних источников: радиостанций, грозовых разрядов, ЛЭП, электротранспорта и др. источников помех.
- Мобильность и оперативность определяются энергопотреблением (на сколько батареек хватит), массогабаритами прибора и размерами зоны поиска (сколько можно «прощупать» за 1 проход).
- Дискриминация, или разрешающая способность – дает оператору или управляющему микроконтроллеру возможность по реакции прибора судить о характере найденного объекта.
Дискриминация, в свою очередь, параметр составной, т.к. на выходе металлоискателя наличествует 1, максимум 2 сигнала, а величин, определяющих свойства и расположение находки, больше. Тем не менее, с учетом изменения реакции прибора во время приближения к объекту, в нем выделяются 3 составляющих:
- Пространственная – свидетельствует о расположении объекта в зоне поиска и глубине его залегания.
- Геометрическая – дает возможность судить о форме и размерах объекта.
- Качественная – позволяет строить предположения о свойствах материала объекта.
Рабочая частота
Все параметры металлоискателя связаны сложным образом и многие взаимосвязи взаимоисключающие. Так, напр.
, понижение частоты генератора позволяет добиться большего проницания и зоны поиска, но ценой увеличения энергопотребления, и ухудшает чувствительность и мобильность вследствие возрастания размеров катушки.
В целом же каждый параметр и их комплексы так или иначе привязаны к частоте генератора. Поэтому первоначальная классификация металлоискателей строится по диапазону рабочих частот:
- Сверхнизкочастотные (СНЧ) – до первых сотен Гц. Абсолютно не любительские приборы: энергопотребление от десятков Вт, без компьютерной обработки по сигналу ни о чем судить нельзя, для перемещения нужен автотранспорт.
- Низкочастотные (НЧ) – от сотен Гц до нескольких кГц. Просты схемотехнически и конструктивно, помехоустойчивы, но мало чувствительны, дискриминация плохая. Проницание – до 4-5 м при энергопотреблении от 10 Вт (т. наз. глубинные металлодетекторы) или до 1-1,5 м при питании от батареек. Реагируют острее всего на ферромагнитные материалы (черный металл) или большие массы диамагнитных (бетонные и каменные строительные конструкции), поэтому иногда называются магнитодетекторами. К свойствам грунта мало чувствительны.
- Повышенной частоты (ПЧ) – до нескольких десятков кГц. Сложнее НЧ, но требования к катушке невысоки. Проницание – до 1-1,5 м, помехоустойчивость на троечку, хорошая чувствительность, удовлетворительная дискриминация. Могут быть универсальными при использовании в импульсном режиме, см. ниже. На обводненных или минерализованных грунтах (с обломками или частицами скальных пород, экранирующих ЭМП) работают плохо или вовсе ничего не чуют.
- Высокой, или радиочастоты (ВЧ или РЧ) – типичные металлоискатели «на золото»: отличная дискриминация на глубину до 50-80 см в сухих непроводящих и немагнитных грунтах (пляжный песок и т.п.) Энергопотребление – как в пред. п. Остальное – на грани «неуда». Эффективность прибора во многом зависит от конструкции и качества исполнения катушки (катушек).
Особняком стоят импульсные металлоискатели. У них первичный ток в катушку поступает импульсами. Задав частоту следования импульсов в пределах НЧ, а их длительность, которая определяет спектральный состав сигнала, соответствующей диапазонам ПЧ-ВЧ, можно получить металлодетектор, совмещающий в себе положительные свойства НЧ, ПЧ и ВЧ или перестраиваемый.
Метод поиска
Насчитывается не менее 10 методов поиска предметов с помощью ЭМП. Но такие, как, скажем, метод непосредственной оцифровки ответного сигнала с компьютерной обработкой – удел профессионального применения.
Самодельный металлоискатель схемотехнически строят более всего следующими способами:
- Параметрическим.
- Приемо-передающим.
- С накоплением фазы.
- На биениях.
Без приемника
Параметрические металлоискатели в некотором роде выпадают из определения принципа действия: в них нет ни приемника, ни приемной катушки. Для детекции используется непосредственно влияние объекта на параметры катушки генератора – индуктивность и добротность, а структура ЭМП значения не имеет.
Изменение параметров катушки ведет к изменению частоты и амплитуды вырабатываемых колебаний, что фиксируется разными способами: измерением частоты и амплитуды, по изменению тока потребления генератора, измерением напряжения в петле ФАПЧ (системы фазовой автоподстройки частоты, «подтягивающей» ее к заданному значению) и др.
Параметрические металлоискатели просты, дешевы и помехоустойчивы, но пользование ими требует определенных навыков, т.к. частота «плывет» под влиянием внешних условий. Чувствительность у них слабая; более всего используются как магнитодетекторы.
С приемником и передатчиком
Устройство приемопередающего металлоискателя показано на рис. в начале, к пояснению принципа действия; там же описан и принцип работы.
Такие приборы позволяют добиться наилучшей эффективности в своем диапазоне частот, но сложны схемотехнически, требуют особо качественной системы катушек. Приемопередающие металлоискатели с одной катушкой называются индукционными. Их повторяемость лучше, т.к.
проблема правильного расположения катушек относительно друг друга отпадает, но схемотехника сложнее – нужно выделить слабый вторичный сигнал на фоне сильного первичного.
До щелчка
Металлоискатели с накоплением фазы, или фазочувствительные, бывают либо однокатушечными импульсными, либо с 2-мя генераторами, работающими каждый на свою катушку.
В первом случае используется тот факт, что импульсы при переизлучении не только расплываются, но и задерживаются. Во времени сдвиг фаз нарастает; когда он достигает определенной величины, дискриминатор срабатывает и в наушниках раздается щелчок.
По мере приближения к объекту щелчки становятся чаще и сливаются в звук все более высокого тона. Именно на этом принципе построен «Пират».
Во втором случае техника поиска та же, но работают 2 строго симметричных электрически и геометрически генератора, каждый на свою катушку. При этом вследствие взаимодействия их ЭМП происходит взаимная синхронизация: генераторы работают в такт.
При искажении общего ЭМП начинаются срывы синхронизации, слышимые как те же щелчки, а затем тон. Двухкатушечные металлоискатели со срывом синхронизации проще импульсных, но менее чувствительны: проницание их в 1,5-2 раза меньше.
Дискриминация в обоих случаях близка к отличной.
Фазочувствительные металлодетекторы – любимые инструменты курортных старателей. Асы поиска настраивают свои приборы так, что точно над объектом звук снова пропадает: частота следования щелчков переходит в ультразвуковую область.
Таким способом на ракушечном пляже удается находить золотые серьги размером с ноготь на глубине до 40 см.
Однако на грунте с мелкими неоднородностями, обводненном и минерализованном, металлоискатели с накоплением фазы уступают прочим, кроме параметрических.
По писку
Биения 2-х электросигналов – сигнал с частотой, равной сумме или разности основных частот исходных сигналов или кратных им – гармоник. Так, напр.
, если на входы специального устройства – смесителя – подать сигналы с частотами 1 МГц и 1 000 500 Гц или 1,0005 МГц, а к выходу смесителя подключить наушники или динамик, то услышим чистый тон 500 Гц.
А если 2-й сигнал будет 200 100 Гц или 200,1 кГц, случится то же самое, т.к. 200 100 х 5 = 1 000 500; мы «поймали» 5-ю гармонику.
В металлоискателе на биениях действуют 2 генератора: опорный и рабочий. Катушка колебательного контура опорного маленькая, защищенная от посторонних влияний, или его частота стабилизирована кварцевым резонатором (попросту – кварцем).
Контурная катушка рабочего (поискового) генератора – поисковая, и его частота зависит от наличия предметов в зоне поиска. Перед поиском рабочий генератор настраивают на нулевые биения, т.е. до совпадения частот. Полного нуля звука как правило не добиваются, а настраивают до очень низкого тона или хрипа, так удобнее искать.
По изменению тона биений судят о наличии, величине, свойствах и расположении объекта.
Читайте также: Зарядное устройство-приставка на мк от 0 до 40в и от 0 до 50а
Металлоискатели на гармониках в общем сложнее импульсных, однако работают на любом грунте. Правильно изготовленные и настроенные, они не уступают импульсным. Об этом можно судить хотя бы по тому, что золотоискатели-пляжники никак не сойдутся во мнениях, что же лучше: импульсник или на биениях?
Катушка и прочее
Самое распространенное заблуждение начинающих радиолюбителей – абсолютизация схемотехники. Мол, если схема «крутая», то все будет тип-топ. Относительно металлоискателей это вдвойне неверно, т.к.
их эксплуатационные достоинства сильнейшим образом зависят от конструкции и качества изготовления поисковой катушки.
Как выразился некий курортный старатель: «Находимость детектора должна тянуть карман, а не ноги».
При разработке прибора его схему и параметры катушки подгоняют друг к другу до получения оптимума. Определенная схема с «чужой» катушкой если и заработает, то до заявленных параметров не дотянет. Поэтому, выбирая прототип для повторения, смотрите прежде всего описание катушки. Если оно неполное или неточное – лучше строить другой прибор.
О размерах катушки
Большая (широкая) катушка эффективнее излучает ЭМП и глубже «просветит» грунт. Ее зона поиска шире, что позволяет уменьшить «находимость ногами». Однако, если в зоне поиска окажется крупный ненужный предмет, его сигнал «забьет» слабый от искомой мелочи. Поэтому желательно брать или делать металлодетектор, рассчитанный на работу с катушками разного размера.
Монопетля
Традиционный тип катушки детектора металла т. наз. тонкая катушка или Mono Loop (одинарная петля): кольцо из многих витков эмалированного медного провода шириной и толщиной раз в 15-20 меньше среднего диаметра кольца.
Достоинства катушки-монопетли – слабая зависимость параметров от типа грунта, сужающаяся книзу зона поиска, что позволяет, двигая детектор, точнее определять глубину и расположение находки, и конструктивная простота.
Недостатки – малая добротность, отчего в процессе поиска «плывет» настройка, подверженность помехам и расплывчатая реакция на объект: работа с монопетлей требует значительного опыта пользования данным конкретным экземпляром прибора.
Самодельные металлоискатели начинающим рекомендуется делать с монопетлей, чтобы без особых проблем получить работоспособную конструкцию и приобрести с ней поисковый опыт.
Индуктивность
При выборе схемы, чтобы убедиться в достоверности обещаний автора, и тем более при самостоятельном конструировании или доработке, нужно знать индуктивность катушки и уметь ее рассчитывать. Даже если вы делаете металлоискатель из покупного набора, индуктивность все равно нужно проверить измерениями или расчетом, чтобы не ломать потом голову: почему, все вот вроде исправно, а не пищит.
Калькуляторы для расчета индуктивности катушек имеются в интернете, но компьютерная программа все случаи практики предусмотреть не может. Поэтому на рис. дана старая, десятилетиями проверенная номограмма для расчета многослойных катушек; тонкая катушка – частный случай многослойной.
Номограмма для расчета многослойных катушек
Для расчета поисковой монопетли номограммой пользуются следующим образом:
- Берем величину индуктивности L из описания прибора и размеры петли D, l и t оттуда же или по своему выбору; типичные значения: L = 10 мГн, D = 20 см, l = t = 1 см.
- По номограмме определяем количество витков w.
- Задаемся коэффициентом укладки k = 0,5, по размерам l (высота катушки) и t (ширина ее) определяем площадь сечения петли и находим площадь чистой меди в ней как S = klt.
- Поделив S на w, получим сечение обмоточного провода, а по нему – диаметр провода d.
- Если получилось d = (0,5…0,8) мм, все ОК. В противном случае увеличиваем l и t при d>0,8 мм или уменьшаем при d
Источник: http://vopros-remont.ru/elektrika/metalloiskatel-svoimi-rukami/
Металлоискатель на микроконтроллере AVR
Дата публикации: 23 августа 2012.
Рейтинг: 5 / 5
Рисунок 4. Структурная схема FM металлоискателя
Однако реализация этой идеи “в лоб”, не позволяет получить реальную чувствительность, большую чем в приборе на биениях. Это связано с тем, что невозможно напрямую в реальном масштабе времени (20…40 мс на один отсчет) регистрировать очень малые уходы частоты (единицы и доли герц).
Нам удалось решить эту проблему следующим образом – из теории радиоизмерений известен метод “быстрого” измерения низких частот – т.н. метод обратного счета. В этом методе измеряется период сигнала, а частота вычисляется как его обратная величина.
Оставалась только задача практической реализации.
Практическая конструкция металлоискателя
Очевидно, что если реализовывать такое устройство на элементах средней степени интеграции, то получится сравнительно сложный и громоздкий прибор, что для мобильного исполнения нежелательно. Выходом из этой ситуации стало применение микроконтроллера.
На микроконтроллер оказалось возможно возложить не только задачу по измерению периода, но и практически все функции по обработке результатов – вычисление разности частот, звуковую и световую индикацию результатов измерений.
Наш металлоискатель реализован на микроконтроллере AT90S2313-10PI производства фирмы Atmel.
Это 8-битный экономичный RISC микроконтроллер. Имеет на частоте 10 MHz производительность 10 MIPS. Содержит: 2 кБ флэш памяти, 128 байт EEPROM, 15 линий ввода/вывода, 32 рабочих регистра, два таймера/счетчика, сторожевой таймер, аналоговый компаратор, универсальный последовательный порт. Более подробно с семейством AVR микроконтроллеров можно ознакомиться на сайте производителя.
Основные технические характеристики металлоискателя
Напряжение питания: 5,5-20 ВПотребляемый ток: 15 мАИндикация: световая – 7 светодиодов и звуковаяРежимы поиска: статический и динамическийДискриминация: ферромагнетики/неферромагнетикиГлубина обнаружения (на воздухе):Монета диаметром 25 мм: 11 см”Пистолет”: 17 см
“Каска”: 37 см
Принципиальная схема
Принципиальная схема металлоискателя по принципу частотомера изображена рис.5.
Рисунок 5. Принципиальная электрическая схема металлоискателя
Измерительный генератор построен на таймере D1 NE555. Она используется в несколько необычном включении – в качестве LC генератора. Колебательный контур генератора состоит из конденсаторов C1,C2 и катушки индуктивности датчика. Резонансная частота контура определяется как
где C – это последовательное соединение конденсаторов C1 и C2. Так как микроконтроллер автоматически подстраивается под частоту измерительного генератора, в схеме не предусмотрена подстройка частоты генератора.
При использовании датчика диаметром 190 мм (100 витков) и емкостях конденсаторов С1=0.047 F и C2=0.01 F частота составит около 20 кГц. При необходимости ее можно изменить, заменив конденсаторы C1, C2.
При этом желательно чтобы их емкости находились в соотношении примерно (4…6): 1.
На микроконтроллер D2 возложены все остальные функции по обработке сигнала измерительного генератора вплоть до индикации. В данной схеме применен микроконтроллер AT90S2313, описанный выше. Исполнение Industrial (температурный диапазон -40C…+85C).
Это сделано из соображений, чтобы прибор мог эксплуатироваться в полевых условиях при отрицательных температурах. Непосредственно к микросхеме микроконтроллера подключены как органы управления, так и органы индикации.
В металлоискателе реализованы два режима работы, которые задаются при помощи переключателя S1 – статический и динамический. В статическом режиме сигнал, который представляет собой цифровой код разности частот, логарифмируется и сразу подается на индикацию.
Каждый уровень световой индикации сопровождается своим тоном звуковой индикации.
Динамический режим предназначен для поиска мишеней в сложных условиях, на фоне помех от грунта, минералов и т.д. В динамическом режиме сигнал подвергается цифровой фильтрации, которая выделяет полезный сигнал на фоне мешающих сигналов. В своем приборе мы применили оптимальную согласованную фильтрацию.
Вкратце ее суть заключается в том, что для любого сигнала существует оптимальный фильтр, позволяющий получить максимальный отклик на выходе фильтра. Мы реализовали такой цифровой фильтр для сигнала расстройки частоты, который возникает при движении поисковой катушки над мелкими мишенями со скоростью 0.5-1 м/c.
Фильтр реализован программно.
При помощи переменного резистора R6 регулируется чувствительность прибора. Светодиоды VD1…VD3 индицируют уровень отклонения частоты измерительного генератора в случае преобладания ферромагнитного эффекта.
Светодиоды VD5…VD7 – в случае преобладания эффекта проводимости. Светодиод VD4 указывает на нулевой сдвиг частоты.
Наушник Y предназначен для звуковой индикации отклонения частоты сигнала измерительного генератора.
Схема содержит рекордно низкое количество деталей. При этом к ним не выдвигается особых требований. Микросхему AT90S2313-10PI можно заменить на AT90S2313-10PC, однако, в этом случае не гарантируется работа при температуре меньше 0C. (что вполне может быть в полевых условиях).
Микросхему D1 можно попробовать заменить на КР1006ВИ1. Светодиоды желательно выбирать с повышенной яркостью свечения. Стабилизатор D3 можно заменить на К1184ЕН1 или, что несколько хуже – 78L05. В последнем случае минимально допустимое напряжение батареи составит 6,7 В. К резисторам особых требований не предъявляется. Они могут иметь рассеиваемую мощность 0,125-0,25 Вт.
Конденсаторы C1 и C2 – должны иметь минимальный ТКЕ, особенно C2. К остальным конденсаторам не предъявляется особых требований.
Наушник Y (или наушники) можно взять от плеера. Возможно потребуется подобрать номинал резистора R3 для получения приемлемой громкости. В крайнем случае, наушник можно заменить на пьезоизлучатель.
Конструкция корпуса прибора может быть достаточно произвольной.
Особо следует остановиться на конструкции поисковой катушки – она может быть реализована различными способами. Основные требования к ней – жесткость конструкции, герметичность и наличие электростатического экрана. Можно предложить следующую технологию изготовления катушки:
Берется доска подходящего размера и на ней рисуется окружность диаметром 190 мм. Затем равномерно по окружности в доску забиваются небольшие гвозди – 15…20 штук.
На эти гвозди наматывается 100 витков эмалированного провода диаметром 0.3 – 0.56 мм. После намотки гвозди извлекаются или подгибаются и катушка снимается с оправки.
Следующий этап – обмотка катушки изолентой. Обмотка ведется внахлест. См. рис.6
Рисунок 6. Обмотка катушки липкой лентой
Аналогичным образом поверх слоя из липкой ленты наносится слой из алюминиевой фольги, служащий экраном обмотки датчика. Для этого фольга нарезается на полосы шириной около 10 мм.
Для предотвращения образования короткозамкнутого витка, снижающего добротность контура, обмотка из фольги должна занимать не всю поверхность кольца обмотки датчика – от фольги оставляется свободным небольшой участок длиной 10-20 мм. Отвод от экрана выполняется луженым одножильным проводом, который закрепляют узлом поверх экрана.
В завершение, кольцо обмотки датчика обматывают еще одним слоем липкой ленты по все поверхности, выпустив наружу выводы обмотки и экрана. К этим выводам подпаивается экранированный кабель, который соединяет катушку с металлоискателем. Жесткость катушке можно придать различными способами.
Один из них – подобрать подходящий корпус, например, взять крышку от набора пластиковой посуды, поместить в него катушку и залить эпоксидной смолой. Предварительно необходимо проделать в корпусе отверстие и продеть в него кабель. Также на корпусе катушки необходимо предусмотреть крепление для штанги.
Вид печатной платы, расположение элементов на печатной плате и рисунок печатной платы (М1:1) приведены на рис.7, 8 и 9.
Настройка прибораМожно предложить следующий порядок настройки прибора. Проверить правильность монтажа схемы и подать питание. Измерить потребляемый ток. Он должен быть не более 15 мА.
Читайте также: Малогабаритные диоды с барьером шоттки показывают самое низкое значение напряжения падения
Убедиться, что на выводе 3 микросхемы D1 присутствует меандр расчетной частоты (около 20 кГц для указанных выше номиналов конденсаторов C1 и C2 и стандартного датчика) Удалить рамку прибора подальше от металлических предметов и нажать кнопку S0 «Сброс».
Убедиться в работоспособности органов индикации, поднося к датчику различные металлические предметы.
Работа с прибором
Если переключатель S1 замкнут, то прибор переходит в статический режим. В этом режиме при приближении катушки к ферромагнитной мишени начинают последовательно загораться светодиоды VD3, VD2, VD1. Если катушку приближать к неферромагнитному металлическому объекту, то будут последовательно загораться светодиоды VD5, VD6, VD7.
К сожалению таким же образом прибор реагирует на железные предметы с большой площадью поверхности (например, консервная банка). Это связано с тем, что при воздействии на поисковую катушку в металлических ферромагнитных объектах возникает сразу два эффекта – эффект проводимости и ферромагнитный эффект.
При некотором соотношении площади поверхности объекта к объему начинает преобладать эффект проводимости.
При размыкании переключателя S1 прибор переходит в динамический режим. В этом режиме катушка должна перемещаться над грунтом со скоростью примерно 0.5-1 м/с. Местонахождение объекта в динамическом режиме находится методом “артиллерийской вилки” при проведении катушки над объектом дважды – слева направо и справа налево.
В этом режиме важно почувствовать наименьшую скорость, с которой можно перемещать катушку. Это легко осваивается при недолгой тренировке. Индикация в динамическом режиме выглядит немного иначе. При передвижении катушки над ферромагнитным объектом сначала загораются светодиоды из “шкалы” VD5, VD6, VD7, а затем из “шкалы” VD3, VD2, VD1.
При передвижении катушки над неферромагнитным объектом индикация работает наоборот.
Как уже было указано выше, каждому светодиоду соответствует свой тон звуковой индикации. После непродолжительной работы с металлоискателем запоминаются “напевы”, характерные для разных типов мишеней. Это позволяет при поисках пользоваться преимущественно звуковой индикацией, что довольно удобно.
Перед началом работы в обоих режимах необходимо выставить оптимальную чувствительность прибора с помощью переменного резистора R6. Он выставляется в такое положение, когда прибор начинает индицировать ложные отклики. Затем медленно вращая ротор этого резистора, необходимо добиться исчезновения этих ложных срабатываний.
При прочих равных условиях динамический режим за счет фильтрации позволяет достичь лучшей чувствительности по сравнению со статическим режимом. Однако статический режим также бывает иногда необходим.
Например, необходимо проверить дно узкой ямы. В этом случае нет возможности осуществлять горизонтальные качания поисковой катушки, которые необходимы для динамического режима.
Здесь выручит статический режим.
Во время полевых испытаний металлоискатель показал неплохие результаты.
Признаюсь сразу: когда я первый раз увидел схему импульсного металлоискателя “ИМПАД” (чуть позже её доработали и переименовали в “ПИРАТ”), я не поверил, что ЭТО может вполне неплохо работать, показывая с простейшей катушкой результат 20-25см на монету 5 копеек СССР. Не удержался и собрал этот импульсный металлодетектор. К моему удивлению, ОНО заработало. Причём довольно неплохо! Схема оригинала выглядит так: На мой взгляд, автор этого схемного решения (Вадим2 с форума cxem.
Собрав тот металлоискатель (кажется) в 2013 году, я с ней немного “поигрался”, но так и не прочувствовав принципа работы, успешно распаял плату.. А месяц назад на том же форуме cxem.net увидел продолжение этой схемы в виде проекта на PIC12F675. Не удержался, собрал. Схема заработала, но ряд моментов в прошивке контроллера и самой схеме мне не понравилось. Творческий зуд заставил меня написать под ту плату свою прошивку. Не полное использование потенциала контроллера и желание ещё больше упростить схему аналоговой части подтолкнули на эксперименты. В результате было “отутюжено” с десяток вариантов плат и в конце концов родился “Питон” (точнее Pi-Tone) как попытка устранить главный недостаток металлоискателя “ИМПАД”-“ПИРАТ” – жуткий звук. (У меня через 20-30 минут от слушания его жужжания начинала болеть голова).
Схема импульсного металлоискателя, на мой взгляд, стала даже немного проще оригинала. Чувствительность металлодетектора при “правильных” деталях и точном исполнении поисковой катушки те же 20-25см на 5 коп. СССР и примерно полтора метра на крупные металлические предметы вроде двери. Ток потребления в режиме поиска около 30 мА и при сработке около 50 мА. Кроме лучшего звука, за счёт применения контроллера, удалось добавить в схему контроль напряжения аккумулятора.
При снижении напряжения ниже 10,3в (для аккумулятора это критическая величина) работа формирователя импульсов останавливается и контроллер издаёт звук, оповещающий о прекращении работы металлоискателя. Светодиод работает синхронно с генерацией звуков, поэтому на эту цепь можно подключить цепь управления вибромоторчиком для беззвучного режима. Динамик лучше использовать высокоомный (30-50 Ом). С наушниками чувствительность металлоискателя немного выше (видимо из-за меньшего потребления тока и нагрузки на батарею).
Катушка делается очень просто – из самого обычного и распространённого кабеля для компьютерных сетей, витой пары. 4 пары без экрана. Понадобится кусок длинной ровно 2 метра. Далее, надо будет с каждого конца удалить трубку изоляции длинной примерно 2-3см. и зачистить кончики всех восьми одножильных проводков витых пар. Далее надеваем на проводки изоляционные трубочки и спаиваем концы так, чтобы получить 8 витков провода. С учётом трёх колец кабеля имеем 3 х 8 = 24 витка в катушке. Порядок спайки концов катушки: Идея была позаимствована из этой статьи: http://www.metdet.ru/korsina2.htm Там Вы найдёте более подробное описание. Но я не стал оставлять длинные концы проводов как в первоисточнике и загибать их внутрь катушки, как там указано. Дело в том, что любой металл внутри плоскости катушки будет очень сильно снижать чувствительность металлоискателя к полезным мишеням. Потеряем в дальности.
От поисковой катушки до платы потребуется кусок кабеля. Я использовал аудиокабель – 2 жилы в толстом прозрачном силиконе. Сечение 0,75мм по меди. Почему он? У него низкая погонная ёмкость. Это способствует отсутствию паразитных колебаний (“звона”) сигнала при формировании зондирующих импульсов. Если Вы примените другой кабель, возможно понадобится подбор шунтирующих катушку резисторов (R4 и R5).
Как ни странно, но в такой простой схеме много ещё сюрпризов. Хочется довести до совершенства. Если Вам хочется получить максимальную дальность обнаружения металлических предметов, ниже методика подбора сопротивления параллельно катушке от автора “Пирата”: Один из гостей моего сайта уже успел повторить “Питон”, но сделал его на своей плате, применив преобразователь 3,7в -> 12в один аккумулятор 18650. Металлодетектор вышел очень компактным: Вот небольшое видео с его работой. Завершение статьи тут Файлы прошивок для контроллера и платы можно бесплатно скачать в разделе “Каталог файлов”.
| Архив для статьи “Металлоискатель на микроконтроллере AVR” |
Описание: Файл прошивки микроконтроллера | |
Размер файла: 1.52 KB Количество загрузок: 2 978 | Скачать |
Источник: https://radioparty.ru/device-avr/405-metal-detector-at90s2313
Детектор скрытой проводки своими руками – обзор популярных схем
При выполнении строительных работ часто возникает потребность в проверке стены на присутствие в ней проводки. Для проведения поиска понадобится детектор, реагирующий на металл.
Можно приобрести это устройство в заводском исполнении или же изготовить искатель скрытой проводки своими руками.
В этой статье пойдет речь о нюансах внутреннего устройства детекторов, а также о способах их изготовления.
Существует несколько видов детекторов заводского производства:
- Электростатический. Достоинства такого прибора в простоте внутреннего устройства и возможности находить металлические предметы на значительном отдалении. Недостаток же детектора состоит в возможности поиска лишь в сухой среде. В противном случае будут ложные срабатывания. К тому же обнаружены могут быть только те провода, которые находятся под напряжением.
- Электромагнитный. Достоинства заключаются в простой схеме и высокоточном обнаружении проводки. Недостаток единственный, но существенный: помимо напряжения, нужна довольно мощная нагрузка — не менее 1 киловатта.
- Металлодетектор. Такой прибор представляет собой стандартный металлоискатель. Главный плюс в отсутствии необходимости в напряжении. Недостатки: обнаруживает любой металл (не только проводку), а также конструктивно сложен.
Простейшие схемы самодельных устройств
Выделяют несколько схем таких устройств.
Со звуковой индикацией
Изготовить простой детектор скрытой проводки своими руками можно на основе резистора R1. Данный резистор защищает схему от наведенного напряжения. При этом даже если его устанавливать, на работе прибора это, скорее всего, не скажется.
Схема детектора скрытой проводки со звуковой индикацией
В качестве антенны применяется проводник из меди длиной от 5 до 15 сантиметров. Когда обнаруживается проводка, издается специфическое потрескивание. Пьезоэлемент подключается согласно принципу мостовой схемы, что позволяет контролировать уровень громкости.
Звуковая индикация в сочетании со световой
Данная схема также отличается простотой — понадобится лишь одна микросхема.
Схема искателя скрытой проводки на микросхеме
Особенности схемы: номинал резистора R1 должен быть равен или превышать 50 МОм. Светодиод используется без ограничения сопротивления, поскольку микросхема выполняет данную задачу самостоятельно.
На полевом транзисторе (первая схема)
Транзисторы этой группы чрезвычайно отзывчивы к электрическому полю. Данная особенность используется в нижеуказанной на картинке схеме.
Схема искателя проводки на полевом транзисторе
По рисунку можно понять, что прибор очень прост, его можно изготовить собственноручно, не используя каких-то особых приспособлений. Показатель напряжения питания — от 3 до 5 В.
Тока нужно настолько немного, что детектор способен функционировать на протяжении 5-6 часов без отключения. Катушка антенны фиксируется 0,3-0,5 миллиметровым проводом на сердечник, который, в свою очередь, имеет диаметр в 3 миллиметра.
Количество витков зависит от самого провода: 20 витков для провода в 0,3 миллиметра и 50 витков для провода в 0,5 миллиметра. Антенна может функционировать как с каркасом, так и без него.
На полевом транзисторе (вторая схема)
Еще один вариант изготовления детектора скрытой проводки своими руками на полевом транзисторе — использование микросхемы КП103. Этот полевик характеризуется высокой чувствительностью. Если его затвор оказывается в непосредственной близости с проводкой, сопротивление сокращается, что ведет к открыванию других транзисторов. После этого светодиод начинает светиться.
Прибор отличается небольшими размерами — сборку можно осуществить даже в корпусе от маркера. Антенна протягивается сквозь отверстие в маркере. Длина антенны — от 5 до 10 сантиметров. Однако если проводка находится не слишком глубоко в стене (не глубже 10 сантиметров), можно обойтись длиной ножки полевого транзистора.
Схема детектора скрытой проводки на транзисторе КП103
Транзистор КП103 устанавливается по горизонтали, а затвор нужно согнуть так, чтобы он располагался прямо над транзисторным корпусом.
Принципиальная схема металлоискателя
Схема металлодетектора выглядит следующим образом:
- генератор частоты (100 кГц) — VT1;
- детектор — VT2;
- индикация — VT3, VT4.
Генераторные катушки наматываются на ферритовый сердечник. Стержневой диаметр — 8 миллиметров. Количество витков на первой катушке — 120, на второй — 45. Провод подбирается марки ПЭВТЛ 0,35.
Наладку металлоискателя нужно осуществлять вдали от металлических изделий. Настройка производится подстроечными резисторами R3 и R5 таким образом, чтобы генерация практически сходила на нет (неравномерное свечение диода и невысокая яркость). Далее происходит настойка R3 с целью угасания излучателя.
Следующий шаг — настройка чувствительности. Делается это при помощи куска металла (можно использовать монету) и пары резисторов. Причем настройку чувствительности рекомендуется периодически повторять. Чтобы оптимизировать процесс, сделать его более удобным, регуляторы можно встроить в корпус металлодетектора.
Настроенный прибор включается, когда антенна оказывается вблизи металла — световой диод начинает мигать.
Сигнализатор проводки без батареек
Данный детектор в качестве источника электропитания пользуется непосредственно сетью. Такая схема возможна за счет применения конденсатора повышенной емкости (обозначен на схеме как С1).
Зарядка конденсатора осуществляется от сети. В заряженном состоянии конденсатор передает напряжение в 6-10 В.
При этом от напряжения зависит лишь яркость светового диода, а вот на чувствительности устройства этот показатель не сказывается.
Принципиальная схема искателя скрытой проводки без батареек
Детектор на микроконтроллере
Детектор проводки на микроконтроллере
На схеме выше показан детектор скрытой проводки, построенный на микроконтроллере PIC12F629. Работа устройства базируется на отзывчивости к магнитному полю. Данное поле образуется током, текущим по проводнику, расположенному в стене.
В схеме можно задействовать светодиодную лампу или пьезоизлучатель. Когда магнитное поле обнаруживается, в зависимости от предпочитаемого типа индикации загорается лампа или начинает потрескивать пьезоизлучатель.
Достоинство устройства в его способности откликаться только на частоту 50 Гц, что составляет частоту переменного тока. Таким образом, ложные срабатывания искателя исключены, так как на другие частоты прибор не отреагирует.
Двухэлементный индикатор
Принципиальная схема двухэлементного детектора
В данном случае нужна микросхема и световой диод. В качестве микросхемы можно выбрать DD1, а светодиод рекомендуется взять HL1.
Задача состоит в соединении выводов таким образом, чтобы создать три инвертора в цепи. В результате прибор будет усиливать токи, которые поступают на устройство от поля переменного тока в проводке, находящейся в стене.
При обнаружении проводов начинает светиться диодная лампа. При отдалении от стены или разрыве цепочки лампа тухнет.
Существует два варианта исполнения схемы:
- Соединение выводов: третий с восьмым, второй с десятым, четвертый с седьмым и девятым, первый с пятым, одиннадцатый с четырнадцатым.
- Соединение выводов: третий с восьмым, десятый с тринадцатым, первый с пятым и двенадцатым, второй с одиннадцатым и четырнадцатым, четвертый с седьмым и девятым.
Промышленные схемы профессиональных детекторов
Можно собрать в домашних условиях и прибор профессионального уровня. Однако такое оборудование имеет достаточно сложную схему, и на его изготовление понадобится много усилий. Ниже показаны две схемы на выбор: первая относится к промышленному прибору, вторая — к самодельному устройству «Дятел».
Схема промышленного сигнализатора скрытой проводкиСхема самодельного определителя проводки «Дятел»
Также можно изготовить устройство типа YADITE 8848. Ниже представлены два варианта такого устройства.
Принципиальная схема детектора наTC4069UBPСхема определителя проводки на 74HC14AP
Проверка самодельных искателей проводки
Прежде чем применять самодельный прибор, рекомендуется протестировать его работоспособность. Проверка покажет правильность сборки.
Тест выполняется следующим образом:
- Находим участок, в котором точно есть скрытая проводка. Например, гарантировано можно говорить о наличии в стене проводов, идущих к выключателям и розеткам.
- Проверяем выбранный участок. Для этого подводим прибор к стене и наблюдаем за индикацией.
- Если сигнал поступает лишь в месте прохода кабеля, устройство исправно и им можно пользоваться.
- Если сигнал, то возникает, то пропадает в разных направлениях, значит, прибор неисправен.
Итак, не обязательно приобретать детектор проводки в магазине. Это устройство вполне можно изготовить в домашних условиях, если следовать указанным выше схемам.
Детекторы проводки труб и конструкций
Источник: https://220.guru/electroprovodka/instrumenty/detektor-skrytoj-provodki-svoimi-rukami.html
Спасибо за ваше внимание к сайту нашим новым публикациям.